[1]李艳龙,杨 琪,王雪峰.基于SV-DPI的图像坏元修正FPGA自动化验证[J].红外技术,2020,42(12):1192-1197.[doi:doi:10.11846/j.issn.1001_8891.202012010]
 LI Yanlong,YANG Qi,WANG Xuefeng.Automatic Verification of Field Programmable Gate Arrays for Dead Pixel Correction [J].Infrared Technology,2020,42(12):1192-1197.[doi:doi:10.11846/j.issn.1001_8891.202012010]
点击复制

基于SV-DPI的图像坏元修正FPGA自动化验证
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第12期
页码:
1192-1197
栏目:
出版日期:
2020-12-22

文章信息/Info

Title:
Automatic Verification of Field Programmable Gate Arrays
for Dead Pixel Correction
文章编号:
1001-8891(2020)12-1192-06
作者:
李艳龙杨 琪王雪峰
西安微电子技术研究所,陕西 西安 710065
Author(s):
LI YanlongYANG QiWANG Xuefeng
 Xi’an Microelectronic Technique Institute, Xi’an 710065, China
关键词:
自动化测试FPGA验证红外图像坏元修正验证平台
Keywords:
automated testing FPGA verification dead pixel correction of infrared image verification platform
分类号:
TP306
DOI:
doi:10.11846/j.issn.1001_8891.202012010
文献标志码:
A
摘要:
为实现红外图像坏元修正FPGA(field programmable gate array)的快速验证,提高测试覆盖性,设计了基于SV-DPI(SystemVerilog-direct programming interface)的FPGA自动化验证平台。采用DPI(direct programming interface)编程接口技术,实现了SystemVerilog平台调用C++编程语言,构建了针对红外图像坏元数据的生成和检测修正模型,建立了两种语言在事务级(transaction level)模型的通信。结果表明相对于传统验证方法,该平台结构简单,可以快速实现激励产生、参考模型构建、测试结果自动比对等功能,实现了红外图像坏元检测与修正FPGA的自动化测试,功能覆盖率达到100%,有效缩短FPGA测试平台搭建和调试周期,提高了测试效率和测试质量。
Abstract:
To accelerate the simulation speed and improve the coverage of verification for a field programmable gate array (FPGA) implemented with dead pixel correction of an infrared image, an FPGA automatic verification platform based on SystemVerilog-Direct programming interface(SV-DPI) was designed. Using DPI programming interface technology, the C++ programming language was invoked by the SV platform. A generator and correction model for dead pixel data of infrared images was built. This established a communication between two languages on the transaction level. The results show that, compared with the traditional verification method, the proposed platform is simple in structure and can quickly generate a test vector, construct a reference model, and check results automatically. It realizes automated verification for an FPGA implemented with dead pixel detection and correction of an infrared image. The function coverage can reach 100%. It effectively shortens the period of construction and debugging for the FPGA verification platform and improves the efficiency and quality of verification.

参考文献/References:

[1] 白俊奇, 蒋怡亮, 赵春光, 等. 红外焦平面阵列探测器盲元检测算法研究[J]. 红外技术, 2011, 33(4): 233-235, 240.
BAI Junqi,JIANG Yiliang,ZHAO Chunguang, et al. Blind-pixel detection algorithm for infrared focal plane array detector[J]. Infrared Technology, 2011, 33(4): 233-235, 240.
[2] 李炎冰, 梁少峰, 陈洪亮, 等. 红外焦平面阵列坏元检测算法[J]. 电光与控制, 2015, 22(3): 69-71.
LI Yanbing, LIANG Shaofeng, CHEN Hongliang, et al. A bad-pixel detection algorithm for infrared focal plane array[J]. Electronics Optics & Control, 2015, 22(3): 69-71.
[3] 胡云生, 胡越黎, 燕明, 等. 一种图像坏点检测及修正算法[J]. 上海大学学报: 自然科学版, 2018, 24(5): 755-762.
HU Yunsheng, HU Yueli, YAN Ming, et al. Detection and correction of dead pixels in an image[J]. Journal of Shanghai University: Natrual Science, 2018, 24(5): 755-762.
[4] 李雷鸣, 张焕春, 张波. 一种基于FPGA的图像中值滤波器的硬件实现[J]. 电子工程师, 2004(2): 48-50.
LI Leiming, ZHANG Huanchun, ZHANG Bo. The realization of image median filter based on FPGA[J]. Electronic Engineer, 2004(2): 48-50.
[5] 周珊, 杨雅雯, 王金波. 航天高可靠FPGA测试技术研究[J]. 计算机技术与发展, 2017, 27(3): 1-5.
ZHOU Shan, YANG Yawen, WANG Jinbo. Research on high reliable FPGA test technology on space flight[J]. Computer Technology and Development, 2017, 27(3): 1-5.
[6] 朱伟杰, 阳徽, 费亚男, 等. FPGA功能验证自动化技术研究与实践[J].航天控制, 2017, 35(2): 72-77, 98.
ZHU Weijie, YANG Hui, FEI Yanan, et al. Research and practice of automation technology on FPGA function verification[J]. Aerospace Control, 2017, 35(2): 72-77, 98.
[7] 习建博, 朱鹏, 崔留争. 基于UVM方法的FPGA验证技术[J]. 电子科学技术, 2016, 3(3): 204-207.
XI Jianbo, ZHU Peng, CUI Liuzheng. FPGA verification technology based on UVM[J]. Electronic Science & Technology, 2016, 3(3): 204-207.
[8] 克里斯?斯皮尔. SystemVerilog系统验证[M]. 2版: 张春等译. 北京: 科学出版社, 2009.
Chris Spear. SystemVerilog for Verification[M]. 2nd Edition: Translated by ZHANG Chun , et al. Beijing: Science Press, 2009.
[9] 韩团军. 快速中值滤波算法研究及其FPGA硬件实现[J]. 电子器件, 2017, 40(3): 697-701.
HAN Tuanjun. Research of fast median filtering algorithm and hardware implementation based on FPGA[J]. Chinese Journal of Electron Devices, 2017, 40(3): 697-701.

相似文献/References:

[1]郑天宇,尹达一,赵玥皎.层叠式SOM神经网络星图识别算法及FPGA验证[J].红外技术,2018,40(3):246.[doi:10.11846/j.issn.1001_8891.201803008]
 ZHENG Tianyu,YIN Dayi,ZHAO Yuejiao.Star Pattern Recognition Algorithm and FPGA Verification of Stacked SOM Neural Network[J].Infrared Technology,2018,40(12):246.[doi:10.11846/j.issn.1001_8891.201803008]

备注/Memo

备注/Memo:
收稿日期:2020-04-20;修订日期:2020-06-21.
作者简介:李艳龙(1988-),男,吉林白城人,工程师,硕士。研究方向为FPGA测试、测试自动化技术。E-mail:470968999@qq.com。
更新日期/Last Update: 2020-12-21