参考文献/References:
[1] YE M C, JI C X, CHEN H, et al. Residual deep PCA-based feature extraction for hyperspectral image[J/OL]. Neural Computing& Applications, 2020, 32(7): doi:10.1007/s00521-019-04503-3.
[2] Donoho D L. High-dimensional data analysis: the curses and blessings of dimensionality[J]. AMS Math Challenges Lecture, 2000, 1: 32.
[3] Marpu G, Chanussot P R J, Benediktsson J A. Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles[J]. IEEE Geosci. Remote Sens. Lett., 2012, 9(3): 447-451.
[4] Villa A, Benediktsson J A, Chanussot J, et al. Hyperspectral image classification with independent component discriminant analysis[J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(12): 4865-4876.
[5] Zabalza J, REN J, WANG Z, et al. Singular spectrum analysis for effective feature extraction in hyperspectral imaging[J]. IEEE Geosci. Remote Sens. Lett., 2014, 11(11): 1886-1890.
[6] Chacvez P S, Berlin G L, Sowers L B. Statistical method for selecting landsat MSS retio[J]. Jourmal of Applied Photographic Engineering, 1982, 1(8): 23-30.
[7] Charles S. Selecting band combination from multispectral data[J]. Photogrammetric Engineering and Remote Sensing, 1985, 51(6): 681-687.
[8] 张爱武, 杜楠, 康孝岩, 等. 非线性变换和信息相邻相关的高光谱自适应波段选择[J]. 红外与激光工程, 2017, 46(5): 05308001.
ZHANG Aiwu, DU Nan, KANG Xiaoyan, et al. Adaptive band selection for nonlinear transform and information adjacent correlation[J]. Infrared and Laser Engineering, 2017, 46(5): 05308001.
[9] HU W, HUANG Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015: e258619.
[10] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014, 2: 2672-2680.
[11] Haut J, Paoletti M, Plaza J, et al. Cloud implementation of the K-means algorithm for hyperspectral image analysis[J]. J. Supercomput., 2017, 73(1): 514-529.
[12] Melgani F, Lorenzo B. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Trans. Geosci. Remote Sens., 2004, 42(8): 1778-1790.
[13] Camps-Valls G, Bruzzone L. Kernel-based methods for hyperspectral image classification[J]. IEEE Trans. Geosci. Remote Sens., 2004, 43(6): 1351-1362.
[14] Haut J, Paoletti M, Paz-Gallardo A, et al. Cloud implementation of logistic regression for hyperspectral image classification[C]//Comput. Math. Methods Sci. Eng. (CMMSE), 2017, 3: 1063-2321.
[15] Bazi Y, Melgani F. Gaussian process approach to remote sensing image classification[J]. IEEE Trans. Geosci. Remote Sens., 2010, 48(1): 186-197.
[16] Breiman L. Bagging predictors[J]. Mach Learn, 1996, 24(2): 123-140.
[17] Cutler A, Cutler D R, Stevens J R. Random Forests[M]//Ensemble Machine Learning, Boston: Springer, 2012: 157-175.
[18] 李贞贵. 随机森林改进的若干研究[D]. 厦门: 厦门大学, 2013.
LI Z G. Several Research on Random Forest Improvement[D]. Xiamen: Xiamen University, 2013.
[19] LI Y, ZHANG H, SHEN Q. Spectral-spatial classification of hyper- spectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1): 67.
[20] CHEN Y, JIANG H, LI C X, et al. Deep features extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251.
相似文献/References:
[1]张翔.基于光谱特征增强的高光谱图像地物目标识别[J].红外技术,2010,32(12):717.
Target Recognition of Hyperspectral Image Based?on Enhanced Spectral Characteristics[J].Infrared Technology,2010,32(12):717.
[2]何高攀,杨桄,张筱晗,等.基于端元提取的高光谱异常目标检测[J].红外技术,2015,37(十):836.[doi:10.11846/j.issn.1001_8891.201510006]
HE Gao-pan,YANG Guang,ZHANG Xiao-han,et al.Anomaly Detection Algorithm Based on Endmember Extraction in Hyperspectral Imagery[J].Infrared Technology,2015,37(12):836.[doi:10.11846/j.issn.1001_8891.201510006]
[3]陈海挺.基于非下采样Contourlet变换的异常检测SVDD算法[J].红外技术,2016,38(1):047.[doi:10.11846/j.issn.1001_8891.201601008]
CHEN Haiting.Anomaly Detection SVDD Algorithm Based on Nonsubsampled Contourlet Transform[J].Infrared Technology,2016,38(12):047.[doi:10.11846/j.issn.1001_8891.201601008]
[4]向英杰,张俭峰,杨 桄,等.基于混合噪声估计的高光谱图像异常检测方法[J].红外技术,2017,39(8):734.[doi:10.11846/j.issn.1001_8891.201708011]
XIANG Yingjie,ZHANG Jianfeng,YANG Guang,et al.A Mixed-Noise Estimation-Based Anomaly Detection Method for Hyperspectral Image [J].Infrared Technology,2017,39(12):734.[doi:10.11846/j.issn.1001_8891.201708011]
[5]向英杰,杨 桄,张俭峰,等. 采用分段行-列核2DPCA的高光谱图像降维[J].红外技术,2017,39(12):1107.[doi:10.11846/j.issn.1001_8891.201712007]
XIANG Yingjie,YANG Guang,ZHANG Jianfeng,et al. Dimensionality Reduction for Hyperspectral Image Using a Segmented Row-column Kernel Two-dimensional Principal Component Analysis Method[J].Infrared Technology,2017,39(12):1107.[doi:10.11846/j.issn.1001_8891.201712007]
[6]徐杭威,赵 壮,岳 江,等. 一种基于归一化光谱向量的高光谱图像实时性非监督分类方法[J].红外技术,2018,40(4):362.[doi:10.11846/j.issn.1001_8891.201804010]
XU Hangwei,ZHAO Zhuang,YUE Jiang,et al.Real-time Unsupervised Classification Method of Hyperspectral Images Based on the Normalized Spectral Vector [J].Infrared Technology,2018,40(12):362.[doi:10.11846/j.issn.1001_8891.201804010]
[7]徐 君,王旭红,杨 勇,等.一种基于光谱角空间变换的高光谱图像分割方法[J].红外技术,2018,40(10):1013.[doi:10.11846/j.issn.1001_8891.201810014]
XU Jun,WANG Xuhong,YANG Yong,et al.A Hyperspectral Image Segmentation Method Based on Spectral Angular Space Transformation [J].Infrared Technology,2018,40(12):1013.[doi:10.11846/j.issn.1001_8891.201810014]
[8]严 阳,华文深,张 炎,等.可见-近红外高光谱伪装目标特性分析[J].红外技术,2019,41(2):171.[doi:10.11846/j.issn.1001_8891.2019020011]
YAN Yang,HUA Wenshen,ZHANG Yan,et al.Visible Near-infrared Hyperspectral Camouflage Target Characteristic Analysis[J].Infrared Technology,2019,41(12):171.[doi:10.11846/j.issn.1001_8891.2019020011]
[9]张国东,周浩,方淇,等.基于栈式自编码神经网络对高光谱遥感图像分类研究[J].红外技术,2019,41(5):450.[doi:10.11846/j.issn.1001_8891.201905010]
ZHANG Guodong,ZHOU Hao,FANG Qi,et al.Classification of Hyperspectral Remote Sensing Images Based on Stack Self-encoding Neural Network[J].Infrared Technology,2019,41(12):450.[doi:10.11846/j.issn.1001_8891.201905010]
[10]陈 欣,粘永健,王忠良.基于线性混合模型的高光谱图像分布式压缩感知[J].红外技术,2019,41(8):758.[doi:10.11846/j.issn.1001_8891.2019080011]
CHEN Xin,NIAN Yongjian,WANG Zhongliang.Distributed Compressive Sensing for Hyperspectral Imaging Based on Linear Mixing Model [J].Infrared Technology,2019,41(12):758.[doi:10.11846/j.issn.1001_8891.2019080011]