[1]贾梦涵,唐利斌,左文彬,等.氧化物基紫外探测器的研究进展[J].红外技术,2020,42(12):1121-1133.[doi:doi:10.11846/j.issn.1001_8891.202012001]
 JIA Menghan,TANG Libin,ZUO Wenbin,et al.Progress in Oxide-based Ultraviolet Detectors[J].Infrared Technology,2020,42(12):1121-1133.[doi:doi:10.11846/j.issn.1001_8891.202012001]
点击复制

氧化物基紫外探测器的研究进展
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第12期
页码:
1121-1133
栏目:
出版日期:
2020-12-22

文章信息/Info

Title:
Progress in Oxide-based Ultraviolet Detectors
文章编号:
1001-8891(2020)12-1121-13
作者:
贾梦涵13唐利斌23左文彬23王 方3姬荣斌2项金钟13
1. 云南大学 物理与天文学院,云南 昆明 650500;
2. 昆明物理研究所,云南 昆明 650223;
3. 云南省先进光电材料与器件重点实验室,云南 昆明 650223
Author(s):
JIA Menghan13TANG Libin23ZUO Wenbin23WANG Fang3JI Rongbin2XIANG Jinzhong13
1. School of Physics and Astronomy, Yunnan University, Kunming 650500, China;
2. Kunming Institute of Physics, Kunming 650223, China;
3. Yunnan State Key Laboratory of Advanced Photoelectric Materials and Devices, Kunming 650223, China
关键词:
光电探测氧化物基材料紫外探测器
Keywords:
photoelectric detection oxide-based materials ultraviolet detectors
分类号:
TN204
DOI:
doi:10.11846/j.issn.1001_8891.202012001
文献标志码:
A
摘要:
随着紫外探测技术的不断发展,氧化物材料在紫外探测领域表现出传统探测器所不具备的优点而成为近年研究的热点,是继红外探测技术之后又一快速发展的军民两用探测技术。然而,氧化物基紫外光电探测器的广泛应用,仍然面临一些问题。本文对国内外紫外探测技术的应用和发展历史进行了概述,并对3种金属氧化物紫外探测材料的晶体结构、性质及其器件研究进展进行了概括和讨论。最后,针对氧化物基紫外探测材料及器件在研究中所面临的问题,进行了分析,并对氧化物基紫外探测技术的发展进行了总结与展望。
Abstract:
With the development of ultraviolet detection technology, oxide materials showing the unique advantages in the field of ultraviolet detection, which the traditional detectors didn’t possess, and becoming a hot research topic in recent years. It is a fast-developing dual-purpose detection technology after the infrared detection technology. However, the wide applications of oxide-based ultraviolet detectors still face challenges. In this paper, we have summarized the applications and development histories of the ultraviolet detection technology at home and abroad. The crystal structures, properties and progresses in devices of three kinds of metal oxide ultraviolet materials are summarized and discussed. In the end, the problems in the research of the oxide-based ultraviolet detection materials and devices are analyzed, and the development of the oxide-based ultraviolet detection technology is summarized and prospected.

参考文献/References:

[1] Lucas R M, Yazar S, Young A R, et al. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate[J]. Photochemical & Photobiological Sciences, 2019, 18(3): 641-680.
[2] ZHOU C, AI Q, CHEN X, et al. Ultraviolet photodetectors based on wide bandgap oxide semiconductor films[J]. Chinese Physics B, 2019, 28(4): 48503-048503.
[3] Siegel A M, Shaw G A, Model J. Short-range communication with ultraviolet LEDs[J]. Proceedings of SPIE, The International Society for Optical Engineering, 2004, 5530: 182-193.
[4] XIA Y, LIU X Z. Study on the new structure of the solar blind ultraviolet detector[J]. IEEM, 2016, 1: 489-496.
[5] 单海滨, 石艳军, 陈翔, 等. 利用FY3地球辐射收支及臭氧探测资料监测紫外辐射[C]//中国气象学会年会s21新一代气象卫星技术发展及其应用, 2016: 49.
SHAN Haibin, SHI Yangjun, CHEN Xiang, et al. Utilizing FY3 earth radiation budget and ozone detection data to monitor ultraviolet radiation[C]//Annual Development of China Meteorological Society s21 New Generation Meteorological Satellite Technology and Its Application, 2016: 49.
[6] Razeghi M, Rogalski A. Semiconductor ultraviolet detectors[J]. Journal of Applied Physics, 1996, 79(10): 7433-7473.
[7] Butun S, Gokkavas M, YU H B, et al. Dark current reduction in ultraviolet metal-semiconductor-metal photodetectors based on wide band-gap semiconductors[J]. IEEE Leos Ann Mtg, 2009: 236-237.
[8] CHEN H, LIU K, HU L, et al. New concept ultraviolet photodetectors[J]. Materials Today, 2015, 18(9): 493-502.
[9] Kim M, Seo J H, Singisetti U, et al. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond[J]. Journal of Materials Chemistry C, 2017, 5(33): 8338-8354.
[10] ZOU Yanan, ZHANG Yue, HU Yongming, et al. Ultraviolet detectors based on wide bandgap semiconductor nanowire: a review[J]. Sensors, 2018, 18(7): 2072.
[11] JIANG D, ZHANG J, LU Y, et al. Ultraviolet Schottky detector based on epitaxial ZnO thin film[J]. Solid State Electronics, 2008, 52(5): 679-682.
[12] PENG Y, ZHANG Y, CHEN Z, et al. Arrays of solar-blind ultraviolet photodetector based on beta-Ga2O3 epitaxial thin films[J]. IEEE Photonics Technology Letters, 2018, 30(11): 993-996.
[13] ZHANG D, LIU C, YIN B, et al. Organics filled one-dimensional TiO2 nanowires array ultraviolet detector with enhanced photo-conductivity and dark-resistivity[J]. Nanoscale, 2017, 9(26): 9095-9103.
[14] SHI H, CHENG B, CAI Q, et al. Surface state controlled ultrahigh selectivity and sensitivity for UV photodetectors based on individual SnO2 nanowires[J]. Journal of Materials Chemistry C, 2016, 4(36): 8399-8406.
[15] Goswami T, Mondal A, Singh P, et al. In2-xO3-y, 1D perpendicular nanostructure arrays as ultraviolet detector[J]. Solid State Sciences, 2015, 48: 56-60.
[16] 潘傲秋. Sm2O3薄膜异质结的性能及其在紫外光电探测方面的应用研究[D]. 杭州: 浙江理工大学, 2016.
PAN Aoqiu. Study on the properties of Sm2O3 thin film heterojunction and its application in ultraviolet photoelectric detection[D]. Hangzhou: Zhejiang Sci-Tech University, 2016.
[17] Asama N N, Lamia K A, Ghaida S, et al. Current-voltage characteristics of CdO nanostructure ultraviolet photoconductive detector[J]. International Journal of Science, Environment and Technology, 2014, 3(2): 684-691.
[18] Baum W A, Johnson F S, Oberly J J, et al. Solar ultraviolet spectrum to 88 kilometers[J]. Physical Review, 1946, 70(9-10): 781-782.
[19] ZU P, TANG Z K, WONG G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature[J]. Solid State Communications, 1997, 103(8): 459-463.
[20] Service R F. Will UV lasers beat the blues[J]. Science, 1997, 276(5314): 895-895.
[21] Shim M G, Sionnest P. n-type colloidal semiconductor nanocrystals[J]. Nature, 2000, 407(6807): 981-983.
[22] Dittrich T, Zinchuk V, Skryshevskyy V, et al. Electrical transport in passivated Pt/TiO2/Ti Schottky diodes[J]. Journal of Applied Physics, 2005, 98(10): 1522.
[23] XUE H, KONG X, LIU Z, et al. TiO2 based metal-semiconductor-metal ultraviolet photodetectors[J]. Applied Physics Letters, 2007, 90(20): 223505.
[24] Oshima T, Okuno T, Arai N, et al. Flame detection by a β-Ga2O3-based sensor[J]. Japanese Journal of Applied Physics, 2009, 48(1): 011605.
[25] Tzeng S K, Hon M H, Leu I C, et al. Improving the performance of a Zinc oxide nanowire ultraviolet photodetector by adding silver nanoparticles[J]. Journal of The Electrochemical Society, 2012, 159(4): H440-H443.
[26] WEI T C, Tsai D S, Ravadgar P, et al. See-through, solar-blind photodetectors for use in Harsh environments[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 112-117.
[27] CHOU H S, YANG K D, XIAO S H, et al. Temperature-dependent ultraviolet photoluminescence in hierarchical Zn, ZnO and ZnO/Zn nanostructures[J]. Nanoscale, 2019, 11(28): 13385-13396.
[28] Zak A K, Razali R, Majid W A, et al. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles[J]. International Journal of Nanomedicine, 2011, 6(1): 1399-1403.
[29] Hsu C L, Chen K C, Hsueh T J. UV photodetector of a homojunction based on p-type Sb-doped ZnO nanoparticles and n-type ZnO nanowires[J]. IEEE Transactions on Electron Devices, 2014, 61(5): 1347-1353.
[30] Alaie Z, Nejad S M, Yousefi M H. Array of ZnO nanoparticle-sensitized ZnO nanorods for UV photodetection[J]. Journal of Materials Science Materials in Electronics, 2014, 25(2): 852-856.
[31] YANG K, XU C, HUANG L, et al. Synthesis and reactivity in inorganic, metal-organic, and nano-metal chemistry[J]. Taylor & Francis, 2013, 43(3): 1501-1505.
[32] HE J H, LIN Y H, Mcconney M E, et al. Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functiona- lization[J]. Journal of Applied Physics, 2007, 102(8): 354.
[33] WU C Y, Hsu H C, CHENG H M, et al. Structural and optical properties of ZnO nanosaws[J]. Journal of Crystal Growth, 2006, 287(1): 189-193.
[34] GAO P X, DING Y, WANG Z L. Electronic transport in superlattice -structured ZnO nanohelix[J]. Nano Letters, 2009, 9(1): 137-143.
[35] DING Y, KONG X Y, WANG Z L. Doping and planar defects in the formation of single-crystal ZnO nanorings[J]. Physical Review B, 2004, 70(23): 155-163.
[36] YAO J Q, DENG H, LI M, et al. Improving processes on ZnO-based ultraviolet photodetector[J]. Advanced Materials Research, 2013, 685: 195-200.
[37] Desgreniers S. High-density phases of ZnO: structural and compressive parameters[J]. Physical Review B, 1998, 58(21): 14102-14105.
[38] YAN H, YANG Y, FU Z, et al. Fabrication of 2D and 3D ordered porous ZnO films using 3D opal templates by electrode position[J]. Electrochemistry Communications, 2005, 7(11): 1117-1121.
[39] TU Z C, HU X. Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes[J]. Physical Review B, 2006, 74(3): 035434.
[40] Giakoumaki A N, Kenanakis G, Klini A, et al. 3D micro-structured arrays of ZnΟ nanorods[J]. Scientific Reports, 2017, 7(1): 2100.
[41] LIU Y, Gorla C R, LIANG S, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD[J]. Journal of Electronic Materials, 2000, 29(1): 69-74.
[42] Fabricius H, Skettrup T, Bisggard P. Ultraviolet detectors in thin sputtered ZnO films[J]. Applied Optics, 1986, 28: 2764.
[43] 王培利, 李燕. ZnO紫外探测器的研究[D]. 成都: 电子科技大学, 2008.
WANG Peili, LI Yan. Research on ZnO Ultraviolet Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2008.
[44] Jeong I S, Kim J H, Im S. Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure[J]. Applied Physics Letters, 2003, 83(14): 2946-2948.
[45] Moon T H, Jeong M C, Lee W, et al. The fabrication and characterization of ZnO UV detector[J]. Applied Surface Science, 2005, 240(1-4): 280-285.
[46] ZHANG J, SHI J, QI D C, et al. Recent progress on the electronic structure, defect, and doping properties of Ga2O3[J]. APL Materials, 2020, 8(2): 020906.
[47] Razeghi M. Short-wavelength solar-blind detectors-status, prospects, and markets[J]. Proceedings of the IEEE, 2002, 90(6): 1006-1014.
[48] CHEN X, REN F, GU S, et al. Review of gallium-oxide-based solar -blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381-415.
[49] ZHANG L, YAN J, ZHANG Y, et al. A comparison of electronic structure and optical properties between N-doped β-Ga2O3 and N-ZnCo -doped β-Ga2O3[J]. Physica B., 2012, 407(8): 1227-1231.
[50] Nakagomi S, Kubo S, Kokubun Y. The orientational relationship between monoclinic β-Ga2O3, and cubic NiO[J]. Journal of Crystal Growth, 2016, 445: 73-77.
[51] Robert S, Guenter W, Michele B, et al. Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001)[J]. Applied Physics Express, 2015, 8(1):11101.
[52] Pratiyush A S, Krishnamoorthy S, Solanke S V, et al. High responsivity in molecular beam epitaxy (MBE) grown beta-Ga2O3 metal semiconductor metal (MSM) solar blind deep-UV photodetector[J]. Applied Physics Letters, 2017, 110(22): 041910.
[53] Oshima T, Okuno T, Fujita S. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors[J]. Japanese Journal of Applied Physics, 2007, 46(11): 7217-7220.
[54] Suzuki R, Nakagomi S, Kokubun Y, et al. Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with an Au Schottky contact fabricated on single crystal substrates by annealing[J]. Applied Physics Letters, 2009, 94: 222102.
[55] 冯喜宁. 氧化物纳米结构在紫外探测器件上的应用研究[D]. 重庆: 西南大学, 2014.
FENG Xining. Research on the Application of Oxide Nanostructures in UV Detectors[D]. Chongqing: Southwest University, 2014.
[56] 盛拓. 氧化镓薄膜光电导日盲紫外探测器的研制[D]. 成都: 电子科技大学, 2015.
SHENG Tuo. Development of Gallium oxide thin film photoconductive solar blind ultraviolet detector[D]. Chengdu: University of Electronic Science and Technology of China, 2012.
[57] 刘浩, 邓宏, 韦敏, 等. 氧化镓薄膜的制备及其日盲紫外探测性能研究[J]. 发光学报, 2015, 36(8): 907-910.
LIU Hao, DENG Hong, WEI Min, et al. Preparation of gallium oxide thin film and its solar blind ultraviolet detection performance[J]. Chinese Journal of Luminescence, 2015, 36(8): 907-910.
[58] JIA M, WANG F, TANG L, et al. High-performance deep ultraviolet photodetector based on NiO/β-Ga2O3 heterojunction[J]. Nanoscale Research Letters, 2020, 15(1): 47.
[59] ZHENG L, DENG X, WANG Y, et al. Self‐powered flexible TiO2 fibrous photodetectors: heterojunction with P3HT and boosted responsivity and selectivity by Au nanoparticles[J]. Advanced Functional Materials, 2020, 30(24): 2001604.
[60] JI L W, Water W, Hsiao Y J, et al. TiO2-based ultraviolet photo- detectors[J]. Integrated Ferroelectrics, 2013, 143(1): 65-70.
[61] Goldberg Y. Semiconductor near-ultraviolet photoelectronics[J]. Semiconductor Technology, 1999, 14(7): R41.
[62] WANG Y Q, WU B C, LIU Z G, et al. The first-principle study oleic acid/hydrazine exciting the growth of TiO2 (100) crystal face[J]. ICE Science, 2018, 6(4): 31-36.
[63] JIA J, Yamamoto H, Okajima T, et al. On the crystal structural control of sputtered TiO2 thin films[J]. Nanoscale Research Letters, 2016, 11(1): 1-9.
[64] LIU H Y, LIN W H, SUN W C, et al. A study of ultrasonic spray pyrolysis deposited rutile-TiO2-based metal-semiconductor-metal ultraviolet photodetector[J]. Materials Science in Semiconductor Processing, 2017, 57: 90-94.
[65] HUANG H, XIE Y, ZHANG Z, et al. Growth and fabrication of sputtered TiO2 based ultraviolet detectors[J]. Applied Surface Science, 2014, 293(8): 248-254.
[66] Munoz E, Monroy E, Garrido J A, et al. Photoconductor gain mechanisms in GaN ultraviolet detectors[J]. Applied Physics Letters, 1997, 71(7): 870-872.
[67] Garrido J A, Monroy E, Izpura I, et al. Photoconductive gain modelling of GaN photodetectors[J]. Semiconductor Science Technology, 1998, 13(6): 563.
[68] Katz O, Bahir G, Salzman J. Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors[J]. Applied Physics Letters, 2004, 84(20): 4092-4094.
[69] Seo S W, Lee K K, Kang S, et al. GaN, metal-semiconductor-metal photodetectors grown on lithium gallate substrates by molecular-beam epitaxy[J]. Applied Physics Letters, 2001, 79(9): 1372-1374.
[70] ZHANG L, YAO N, ZHANG B, et a1. TiO2 thin film UV detectors deposited by DC reactive magnetron sputtering[J]. Semiconductor Photonics and Technology, 2004, 10(4): 245-247.
[71] 王怡, 江伟, 邢光建, 等. TiO2薄膜紫外探测器的光电特性[C]//第七届中国纳米科技西安研讨会论文集, 2008: 165-170.
WANG Yi, JIANG Wei, XING Guangjian, et al. Optoelectronic characteristics of TiO2 thin film ultraviolet detector [C]//Proceedings of the 7th China Nanotechnology Xi’an Conference, 2008: 165-170.
[72] Ulrich D R. Prospects for sol-gel processes[J]. Journal of Non- Crystalline Solids, 1990, 121(1-3): 465-479.
[73] 张永彬, 赵景畅. TiO2薄膜的制备及光催化性能研究[J]. 功能材料, 2001, 32(3): 310-311.
ZHANG Yongbin, ZHAO Jingchang. Study on preparation and photo- catalytic performance of TiO2 thin films [J]. Functional Materials, 2001, 32(3): 310-311.
[74] 陈士夫, 程雪丽. 空心玻璃微球负载清除水面的油层[J]. 中国环境科学, 1999, 19(1): 47-50.
CHEN Shifu, CHENG Xueli. Hollow glass microspheres for removing oil layer from water surface[J]. China Environmental Science, 1999, 19(1): 47-50.
[75] 贾桂玲, 谢晓峰, 孙召梅, 等. 低温制备光活性纳米晶二氧化钛薄膜[J]. 上海大学学报, 2005, 11(3): 311-313.
JIA Guiling, XIE Xiaofeng, SUN Zhaomei, et al. Preparation of photoactive nanocrystalline titanium dioxide films at low temperature[J]. Journal of Shanghai University, 2005, 11(3): 311-313.
[76] Tsai T Y, CHANG S J, WENG W Y, et a1. A visible-blind TiO2 nanowire photodetector[J]. Journal of the Electrochemical Society, 20l2, 159(4): J132.
[77] Natarajian C, Nogami G. Cathodic electrodeposition of nanocrystalline titanium dioxide thin films[J]. Journal of the Electrochemical Society, 1996, 143(5): 1547-1550.
[78] 崔晓莉, 江志裕. 纳米二氧化钛薄膜的制备及性能研究[J]. 电镀与涂饰, 2002, 21(5): 17-21.
CUI Xiaoli, JIANG Zhiyu. Study on preparation and properties of nano -titanium dioxide films[J]. Plating & Finishing, 2002, 21(5): 17-21.

相似文献/References:

[1]张锐锋,李恩普,候建平,等.用于声悬浮物体的光纤比色温度计设计[J].红外技术,2008,30(三):173.
 ZHANG Rui-feng,LI En-pu,HOU Jian-ping,et al.Design of colorimetric fiber-optic pyrometer for temperature measurementof the object levitated by acoustic field[J].Infrared Technology,2008,30(12):173.
[2]周佳巧,崔文楠,张 涛.基于测量数据的自适应探测系统技术方法研究[J].红外技术,2019,41(2):142.[doi:10.11846/j.issn.1001_8891.201902006]
 ZHOU Jiaqiao,CUI Wennan,ZHANG Tao.Adaptive Detection System Based on Measurement Data[J].Infrared Technology,2019,41(12):142.[doi:10.11846/j.issn.1001_8891.201902006]
[3]张坤杰.车载光电桅杆技术的发展现状及趋势[J].红外技术,2020,42(6):519.[doi:doi:10.11846/j.issn.1001_8891.202006002]
 ZHANG Kunjie.Current Status and Trend of Vehicle Photoelectric Mast Technology[J].Infrared Technology,2020,42(12):519.[doi:doi:10.11846/j.issn.1001_8891.202006002]

备注/Memo

备注/Memo:
收稿日期:2020-11-27;修订日期:2020-12-10.
作者简介:贾梦涵(1993-),女,博士研究生,研究方向是光电材料。
通信作者:唐利斌(1978-),男,研究员级高级工程师,博士生导师,主要从事光电材料与器件的研究。E-mail: scitang@163.com。
项金钟(1963-),男,教授,主要从事低维物理、纳米结构材料及光电应用研究。E-mail: jzhxiang@ynu.edu.cn。
基金项目:国家重点研发计划(2019YFB2203404);云南省创新团队项目(2018HC020);自然科学基金项目(11864044)。
更新日期/Last Update: 2020-12-21